台大應數所(碩士班) 105年度一般考試 機率統計解答

評論: 原題目並未明確表示參數為未知與否,因此在此假設它們為未知。

題目:
https://exam.lib.ntu.edu.tw/sites/default/files/exam/graduate/105/105_2016_graduate.pdf

1. Let X1,,XnX_1, \ldots, X_n be a random sample from a continuous (i.e., an absolutely continuous) distribution F(x)F(x). Find the distribution of the iith order statistics X(1),,X(n)X_{(1)},\ldots, X_{(n)}.

(方法) 由(絕對)連續分布抽樣的順序統計量的聯合機率密度函數為n!f(x1)f(xn)1(x1<<xn)n!f(x_1)\ldots f(x_n)\mathbb{1}(x_1<\ldots<x_n)。我們對x1,,xi1x_1, \ldots, x_{i-1}以及xn,,xi+1x_{n},\ldots, x_{i+1}做積分即可。

(解答) First, integral with respect to x1x_1:
n!f(x1)f(xn)1(x1<<xn)dx1, \int_{-\infty}^{\infty} n!f(x_1)\ldots f(x_n) \mathbb{1}(x_1<\ldots<x_n) dx_1,
which can be rewritten as:
=x2n!f(x1)f(xn)1(x2<<xn)dx1. = \int_{-\infty}^{x_2} n!f(x_1)\ldots f(x_n) \mathbb{1}(x_2<\ldots<x_n) dx_1.
Therefore, we have:
n!F(x2)f(x2)f(x3)f(xn)1(x2<<xn). n! F(x_2) f(x_2) f(x_3)\ldots f(x_n) \mathbb{1}(x_2<\ldots<x_n).
Repeating the above procedure, we obtain after computing ()dxi1\int(\ldots)dx_{i-1}:

n!1(i1)!F(xi)i1f(xi)f(xi+1)f(xn)1(xi<<xn). n! \frac{1}{(i-1)!} F(x_i)^{i-1} f(x_i) f(x_{i+1})\ldots f(x_n) \mathbb{1}(x_{i}<\ldots<x_n).

Second, we integral with respect to xnx_n:
xn1n!1(i1)!F(xi)i1f(xi)f(xi+1)f(xn)1(xi<<xn1)dxn. \int_{x_{n-1}}^{\infty} n! \frac{1}{(i-1)!} F(x_i)^{i-1} f(x_i) f(x_{i+1})\ldots f(x_n) \mathbb{1}(x_{i}<\ldots<x_{n-1}) dx_n.

And we obtain:
n!1(i1)!F(xi)i1f(xi)f(xi+1)f(xn1)(1F(xn1))1(xi<<xn1). n! \frac{1}{(i-1)!} F(x_i)^{i-1} f(x_i) f(x_{i+1})\ldots f(x_{n-1}) (1-F(x_{n-1})) \mathbb{1}(x_{i}<\ldots<x_{n-1}).

By repeating this procedure, we eventually obtain:
n!(i1)!(ni)!F(xi)i1f(xi)(1F(xi))ni. \frac{n!}{(i-1)!(n-i)!} F(x_i)^{i-1} f(x_i) (1-F(x_{i}))^{n-i}.

(補充) 如果你對自己算出來的答案沒有把握,可以代入i=ni = n,檢查你的答案是否合理。

2.
(1) Find the limiting distribution of TtνT \sim t_\nu, a tt distribution with ν\nu degrees of freedom, when ν\nu \rightarrow \infty.
(2) Find the distribution of X1X1+X2\frac{X_1}{X_1+X_2} when X1,X2X_1, X_2 independently follow χν12\chi^2_{\nu_1} and χν22\chi^2_{\nu_2}.

(方法) 第一小題使用Slutsky’s theorem,第二小題做變數變換即可。在開始計算前,可以觀察該隨機變數的值域為0到1,因此可以猜出答案應該會是Beta分布。

(解答 (1))

Let Z0,Z1,,ZniidN(0,1)Z_0, Z_1, \ldots, Z_n \stackrel{\rm iid}{\sim} N(0,1). Define Tn=defZ0Z12++Zn2nT_n \stackrel{\rm def}{=} \frac{Z_0}{\sqrt{\frac{Z_1^2+\ldots+Z_n^2}{n}}}. Note the following two facts when nn goes to infinity:

  1. Z0dN(0,1)Z_0 \stackrel{d}{\rightarrow} N(0,1) because Z0N(0,1)Z_0 \sim N(0,1)
  2. Z12++Znn1a.s.\frac{Z_1^2+\ldots+Z_n}{n} \stackrel{\rm a.s.}{\rightarrow 1} by the Strong Law of Large Numbers, thus Z12++Znn11a.s.\sqrt{\frac{Z_1^2+\ldots+Z_n}{n}}^{-1} \stackrel{\rm a.s.}{\rightarrow 1}

By the Slutsky’s theorem we have:

Z0Z12++Zn2ndN(0,1). \frac{Z_0}{\sqrt{\frac{Z_1^2+\ldots+Z_n^2}{n}}} \stackrel{d}{\rightarrow} N(0,1).

(解答 (2))

Let n=ν1,m=ν2n = \nu_1, m = \nu_2. Define (T,U)=def(X1X1+X2,X1+X2)(T,U) \stackrel{\rm def}{=}(\frac{X_1}{X_1+X_2}, X_1+X_2). Let g:R2Rg: \mathbb{R}^2 \mapsto \mathbb{R} be an arbitrary bounded continuous function.

Consider E[g(T,U)]E[g(T,U)]:

E[g(T,U)]=E[g(X1X1+X2,X1+X2)] E[g(T,U)] = E[g(\frac{X_1}{X_1+X_2}, X_1+X_2)] =x1,x2>0g(x1x1+x2,x1+x2)x1n/21x2m/21Γ(n/2)Γ(m/2)exp(x1+x22)dx1dx2. =\int_{x_1, x_2>0} g(\frac{x_1}{x_1+x_2}, x_1+x_2) \frac{x_1^{n/2-1}x_2^{m/2-1}}{\Gamma(n/2)\Gamma(m/2)} \exp(-\frac{x_1+x_2}{2})dx_1dx_2.

By a variable transformation, we have:
=0<t<1,u>0g(t,u)(tu)n/21(u(1t))m/21Γ(n/2)Γ(m/2)exp(u2)udu. =\int_{0<t<1, u>0} g(t,u) \frac{(tu)^{n/2-1}(u(1-t))^{m/2-1}}{\Gamma(n/2)\Gamma(m/2)} \exp(-\frac{u}{2})udu.

By a simple rearrangement, we further obtain:
=0<t<1,u>0g(t,u)tn/21(1t)m/21Be(n/2,m/2)u(n+m)/21Γ((n+m)/2)exp(u2)du, =\int_{0<t<1, u>0} g(t,u) \frac{t^{n/2-1}(1-t)^{m/2-1}}{{\rm Be}(n/2, m/2)} \frac{u^{(n+m)/2-1}}{\Gamma((n+m)/2)} \exp(-\frac{u}{2})du,
which implies that the joint p.d.f of (T,U)(T,U) is:
tn/21(1t)m/21Be(n/2,m/2)1(0,1)(t)u(n+m)/21Γ((n+m)/2)exp(u2)1(0,)(u). \frac{t^{n/2-1}(1-t)^{m/2-1}}{{\rm Be}(n/2, m/2)} \mathbb{1}_{(0,1)}(t) \cdot \frac{u^{(n+m)/2-1}}{\Gamma((n+m)/2)} \exp(-\frac{u}{2}) \mathbb{1}_{(0,\infty)}(u).

So (T,U)(T,U) are independently follow a Beta distribution and a Chi-square distribution. We conclude that TBeta(n/2,m/2)T \sim {\rm Beta}(n/2, m/2).

 

3. Let UT=tUnif(0,t)U \mid T=t \sim {\rm Unif}(0,t) and suppose that the marginal distribution of TT is an exponential family with rate λ\lambda. Find E[U]E[U] and V[U]V[U].

(方法) 期望值的部分用雙重期望值原理,變異數的部分利用全變異數的公式。

(解答)

E[U]= EE[UT]=E[T/2]=12λ E[U] =  EE[U\mid T] = E[T/2] = \frac{1}{2\lambda} .

V[U]= EV[UT]+VE[UT]=E[T2/12]+V[T/2]=212λ2+14λ2=512λ2 V[U] =  EV[U\mid T] + VE[U\mid T] = E[T^2/12] + V[T/2] = \frac{2}{12\lambda^2} + \frac{1}{4\lambda^2} = \frac{5}{12 \lambda^2}.

4. Let X1,,XniidN(μ,σ2)X_1, \ldots, X_n \stackrel{\rm iid}{\sim} N(\mu, \sigma^2) where μ,σ2\mu, \sigma^2 are unknown parameters and let  Φ()\Phi(\cdot) stand for the CDF of the standard normal distribution. Find the maximum likelihood estimator for Φ(xμσ)\Phi(\frac{x-\mu}{\sigma}) and its asymptotic distribution for a given xRx \in \mathbb{R}.

(方法) 考慮(μ^MLE,σ^MLE2)(\widehat{\mu}_{\rm MLE}, \widehat{\sigma}^2_{\rm MLE})^\top的漸近分布後,考慮一個函數g(y1,y2)=Φ(xy1y2)g(y_1,y_2)= \Phi(\frac{x-y_1}{\sqrt{y_2}})以及在y1=μ1,y2=σ2y_1=\mu_1, y_2=\sigma^2的泰勒展開(也就是multivariate δ\delta-method)。

(解答) First, we find the maximum likelihood estimators for (μ,σ2)(\mu, \sigma^2). The likelihood function is given by:

L(μ,σ2)=i=1n12πσ2exp(12σ2(xiμ)2). L(\mu,\sigma^2)=\prod_{i=1}^n \frac{1}{\sqrt{2\pi\sigma^2}} \exp(-\frac{1}{2\sigma^2}(x_i-\mu)^2).

So the log-likelihood function is:
(μ,σ2)=n2ln(2πσ2)12σ2i=1n(xiμ)2. \ell(\mu,\sigma^2) = -\frac{n}{2}\ln(2\pi\sigma^2) - \frac{1}{2\sigma^2} \sum_{i=1}^n (x_i-\mu)^2.

For fixed σ2>0\sigma^2>0, consider the maximization of (μ,σ2)\ell(\mu,\sigma^2):
μ=n(xˉμ)σ2, \frac{\partial \ell}{\partial \mu} = \frac{n(\bar{x}-\mu)}{\sigma^2},
from which we can see that (,˙σ2)\ell(\dot, \sigma^2) attain the maximum value at μ=xˉ\mu = \bar{x}.

Next, consider the maximization of (xˉ,σ2)\ell(\bar{x}, \sigma^2):

(xˉ,σ2)σ2=n2σ2(1ni=1n(xixˉ)2σ2), \frac{\partial \ell(\bar{x}, \sigma^2)}{\partial \sigma^2} = \frac{n}{2\sigma^2}(\frac{1}{n}\sum_{i=1}^n (x_i-\bar{x})^2 - \sigma^2),
from which we can see that (xˉ,σ2)\ell(\bar{x}, \sigma^2) attains the maximum value at σ2=1ni=1n(xixˉ)2\sigma^2 = \frac{1}{n} \sum_{i=1}^n (x_i-\bar{x})^2.

So we conclude that the maximum likelihood estimators for (μ,σ2)(\mu,\sigma^2) are:
(μ^,σ^2)=(xˉ,1ni=1n(xixˉ)2). (\widehat{\mu}, \widehat{\sigma}^2) = (\bar{x}, \frac{1}{n}\sum_{i=1}^n(x_i-\bar{x})^2).

Next, we consider the asymptotic distribution for (μ^,σ^2)(\widehat{\mu}, \widehat{\sigma}^2).

Note that n(μ^μ)N(0,1)\sqrt{n}(\widehat{\mu}-\mu) \sim N(0,1), so the asymptotic distribution is also N(0,1)N(0,1).

To consider the asymptotic distribution of σ^2\widehat{\sigma}^2, recall that i=1n(xixˉ)2σ2χn12\sum_{i=1}^n(x_i-\bar{x})^2 \sim \sigma^2 \cdot \chi^2_{n-1}. When Y1,,Yn1iidσ2χ1Y_1, \ldots, Y_{n-1} \stackrel{\rm iid}{\sim} \sigma^2 \cdot \chi_{1}, the distribution of i=1n(xixˉ)2\sum_{i=1}^n(x_i-\bar{x})^2 is identical with that of i=1n1Yi2\sum_{i=1}^{n-1} Y_i^2.

So we can consider the asymptotic distribution of 1ni=1n1Yi2\frac{1}{n} \sum_{i=1}^{n-1} Y_i^2 to find the asymptotic distribution of σ^2\widehat{\sigma}^2. By the Central Limit Theorem, we have:

n(1ni=1n1Yi2σ2)dN(0,2σ4). \sqrt{n}(\frac{1}{n}\sum_{i=1}^{n-1} Y^2_i - \sigma^2) \stackrel{d}{\rightarrow} N(0, 2\sigma^4).

Therefore, we also have:

n(σ^2σ2)dN(0,2σ4). \sqrt{n}(\widehat{\sigma}^2 - \sigma^2) \stackrel{d}{\rightarrow} N(0, 2\sigma^4).

By the Basu’s Theorem, we also have μ^,σ^2\widehat{\mu}, \widehat{\sigma}^2 are mutually independent. (One is a complete sufficient statistic for μ\mu, and the other is ancillary.) So we obtain:

n((μ^σ^2)(μσ2))dN((00),(σ2002σ4)) \sqrt{n}(\begin{pmatrix} \widehat{\mu} \\ \widehat{\sigma}^2\end{pmatrix} -\begin{pmatrix} \mu \\ \sigma^2\end{pmatrix}) \stackrel{d}{\rightarrow} N(\begin{pmatrix} 0 \\ 0\end{pmatrix}, \begin{pmatrix}\sigma^2 & 0 \\ 0 & 2\sigma^4 \end{pmatrix})

Finally, consider the following fuction and its Taylor expansion at y=θ\bm{y}=\bm{\theta} , where y=def(y1,y2)\bm{y}\stackrel{\rm def}{=}(y_1,y_2)^\top and θ=def(μ,σ2)\bm{\theta} \stackrel{\rm def}{=}(\mu, \sigma^2)^\top:

g(y)=defΦ(xy1y2). g(\bm{y}) \stackrel{\rm def}{=} \Phi(\frac{x-y_1}{\sqrt{y_2}}).

5. Let X1,,Xniidf(xθ)X_1, \ldots, X_n \stackrel{\rm iid}{\sim} f(x\mid \theta) where f(xθ)=θxθ11(0,1)(x)f(x\mid \theta) = \theta x^{\theta-1} \mathbb{1}_{(0,1)}(x). Find the UMVUE for θ\theta and its asymptotic distribution.

(方法)

(解答)

6. Let X1,,XniidN(μ,σ2)X_1, \ldots, X_n \stackrel{\rm iid}{\sim} N(\mu, \sigma^2) be a random sample where μ,σ2\mu, \sigma^2 are unknown parameters. Find a size α\alpha unbiased test for the hypotheses H0:θ[θ1,θ2]H_0: \theta \in [\theta_1, \theta_2] vs H1:θ[θ1,θ2]H_1: \theta \notin [\theta_1, \theta_2].

(方法)

(解答)

7. Let X1,,XniidN(μ,σ2)X_1, \ldots, X_n \stackrel{\rm iid}{\sim} N(\mu, \sigma^2) be a random sample where μ,σ2\mu, \sigma^2 are unknown parameters. Derive the power function of the size α\alpha likelihood ratio test for the hypotheses H0:θθ0H_0: \theta \leq \theta_0 vs H1:θ>θ0H_1: \theta > \theta_0.

(方法)

(解答)

タイトルとURLをコピーしました