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This document was created by a student of National Taiwan University when he was taking a course in

Probability Theory. Most of the questions are from R.Durrett’s Textbook [1] and were selected by our teacher.

Please make use of this note to prepare for examinations.

Chapter 1. Review of Measure Theory

1. Let (Ω,F , µ) be a measure space. State and prove the following properties of a
measure.

(1) monotonicity

(2) subadditivity

(3) continuity from above

(4) continuity from below

2. (Theorem 1.2.1) Let (Ω,F , P ) be a proability space and let X be a random
variable on it. Let F (x) be a distribution function of X. Prove the following properties.

(1) F is non-decreasing

(2) limx→∞ F (x) = 1 and limx→−∞ F (x) = 0

(3) F is right-continuous

(4) If F (x−) = limy↗x F (y), then F (x−) = P (X < x)

(5) P (X = x) = F (x)− F (x−)

3. (Theorem 1.2.2) Suppose F satisfies 1,2, and 3 in Theorem 1.2.1. Prove that
there exists a probability space and a random variable X whose distribution function is
F.

4. (Theorem 1.2.6) Show that x > 0⇒ (x−1−x−3) exp(−x2/2) ≤
∫∞
x exp(−y2/2)dy ≤

x−1 exp(−x2/2).

5.

(1) (Formula 1.2.1) State the definition of density function of a random variable
X on a probability space (Ω,F , µ).

(2) (Example 1.2.7) Can a density function always exist? If no, give a counter
example.
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6. (Theorem 1.1.4) State a measure extension theorem associated with a Stieltjes
measure function F on the Borel measurable space (R,B(R)). You may want to prove
the following fact. Let G = {(a, b]|a, b ∈ R} and µ((a, b]) = F (b) − F (a)(b > a) or
0(a ≥ b). Then (G, µ) has countable additivity.

7. (Theorem 2.1.6) State and prove the Dynkin’s π − λ theorem.

8. (Uniqueness of measure) Let (Ω,F) be a measurable space and let µ1, µ2 be a
measure on it. Let P be a π-system and suppose P ⊂ F . Suppose (P, µ1) is σ-finite
and µ1 = µ2 on P. Show that µ1 = µ2 on σ[P].

9. (Lemma 1.1.7) Let σ0[•] be a smallest algebra which contains •. (We often call
it an algebra generated from •.) Let G be a semi-algebra. Give a family of sets which is
equal to σ0[G]. Also show that they are equivalent.

10. (Thorem 1.3.1) Let X be a measurable map from (Ω,F) to (A,A). Suppose
A = σ[G]. Show that X is a F/A-measurable map ⇔ ∀A ∈ A X−1(A) ∈ G. Here
X−1(A) = {ω ∈ Ω|X(ω) ∈ A} where A ∈ B(R).

11. (Theorem 1.3.4) Let X is a measurable map from (Ω,F) to (S,A) and let f be
a measurable map from (S,A) to (T,B). Then show that f(X(ω)) is a measurable map
from (Ω,F) to (T,B).

12. (Theorem 1.3.7) Let {Xn}n∈N be a series of random variables. Show that
infn≥1Xn, supn≥1Xn, lim infn→∞Xn, lim supn→∞Xn are also random variables. Discuss
a set {ω ∈ Ω| limn→∞X(ω) exists} is measurable or not.

13. (Exercise 1.2.3) Show that a distribution function F has at most countably
many discontinuities.

14. (Exercise 1.2.4) Show that if F (x) = P ({ω|X ≤ x}) is continuous then Y =
F (X) has a uniform distribution on (0, 1).

15. (Exercise 1.3.5) Show that f is lower semi continuous⇔ {x|f(x) ≤ a} is closed
for each a ∈ R. Finally conclude that semicontinuous functions are measurable.

16. (Exercise 1.3.6) Let f : Rd → R be an arbitrary function and let f δ(x) =
sup{f(y) | |y − x| < δ} fδ(x) = inf{f(y) | |y − x| < δ}.

(1) Show that f δ, fδ are lower semi continuous and upper semi continuous re-
spectively.

(2) Let f0 = limδ↘0 f
δ, f0 = limδ↘0 fδ. Show that the set of points at which f

is discontinuous = {f0 6= f0} is measurable.

17. (Exercise 1.3.7) A function φ : Ω→ R is said to be simple if φ(ω) =
∑n

m=1 cmIAm(ω)
where {cm}nm=1 ⊂ R and {Am}nm=1 ⊂ F . Show that F−measurable functions is the
smallest class containing the simple functions and closed under pointwise limits.
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18. (Exercise 1.3.8) Use Exercise 1.3.7 and show that Y is measurable with respect
to σ(X) if and only if there exists a Borel measurable function f : R → R such that
Y = f(X).

19. (Exercise 1.3.9) To get a constructive proof of the last result note that {ω :
m2−2 ≤ Y < (m+ 1)2−n} = {X ∈ Bm,n} for some Bm,n ∈ B(R) and set fn = m2−n for
x ∈ Bm,n and show that as n→∞ fn(x)→ f(x) and Y = f(X).

20. (Exercise 1.4.4) Prove the Riemann-Lebesgue lemma. If g is integrable then
limn→∞

∫
g(x) cosnxdx = 0. In order to prove this statement, it might be helpful for

you to prove the following fact. Suppose G be a semi-algebra and (G, µ0) is non-negative
µ0(φ) = 0 and has finite additivity. Let µ be an outer measure derived from (G, µ0).
Let σ0[G] be an smallest algebra containing G. Show that ∀ε > 0 and A ∈ σ[G] with
µ(A) <∞, ∃B ∈ σ0[G] such that µ(A∆B) < ε.

21. (Theorem 1.5.1 Jensen’s Inequality.)

(1) State the definition of a function φ being convex.

(2) State and prove Jensen’s Inequality.

22. (Theorem 1.5.2) State and prove Hölder’s Inequality.

23. (Theorem 1.5.7) State and prove Monotone Convergence Theorem.

24. (Theorem 1.5.5) State and prove Fatou’s lemma.

25. (Theorem 1.5.7) State and prove Lebesgue’s dominated convergence theorem.

26. (Exercise 1.5.7) Let f ≥ 0 be an integrable funtion. Show that for all ε > 0,
there exists a positive number δ such that

∫
A fdµ < ε(∀A ∈ F : µ(A) < δ).

27. (Theorem 1.6.4) State and prove Chebyshev’s (or Markov’s) inequality.

28. (Theorem 1.6.8) Suppose Xn → X a.s.. Let g, h be continuous functions with
the following properties.

(1) g ≥ 0 and g(x)→∞ as |x| → ∞.

(2) |h(x)|/g(x)→ 0 as |x| → ∞.

(3) E[g(Xn)] ≤ K <∞ for all n ∈ N.

Then E[h(Xn)]→ E[h(X)].

29. (Theorem 1.6.9 Change Variable Formula) Let X be a random element of (S,S)
with distribution µ. (i.e. µ(A) = P (X ∈ A). ) If f is a measurable function from (S,S)
to (R,B(R)) so that f ≥ 0 or E[f(X)] <∞, then E[f(X)] =

∫
S f(y)µ(dy).

30. (Exercise 1.6.6) Let Y ≥ 0 with E[Y 2] < ∞. Show that P (Y > 0) ≥
(E[Y ]2)/E[Y 2]. (hint: you may use Cauch Shwartz’s inequality.)
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31. (Exercise 1.6.9 Inclusion Exclusin Formula) Show that P (∪ni=1Ai) =
∑n

i=1 P (Ai)−∑
i<j P (Ai ∩ Aj) +

∑
i<j<k P (Ai ∩ Aj ∪ Ak) + .... (hint: you may first show IA =

1−
∏n
i=1(1− IAi).)

32. (Exercise 1.6.10 Bonferroni inequalities)

(1) P (∪ni=1Ai) ≤
∑n

i=1 P (Ai)

(2) P (∪ni=1Ai) ≥
∑n

i=1 P (Ai)−
∑

i<j P (Ai ∩Aj)

(3) P (∪ni=1Ai) ≤
∑n

i=1 P (Ai)−
∑

i<j P (Ai ∩Aj) +
∑

i<j<k P (Ai ∩Aj ∩Ak)

33. (Exercise 1.6.14) Let X ≥ 0 and E[1/X] ≤ ∞. Show the following statements.

(1) limy→∞ yE[1/XI{X>y}] = 0

(2) limy↘+0 yE[1/XI{X>y}] = 0

34. (Theorem 1.7.1) Consider two σ-finite measure spaces (X,A, µ1) and (Y,B, µ2).
Let F = A⊗B be a product measurable space of A,B. Show that there exists a unique
measure µ on (X × Y,A⊗ B) satisfying µ = µ1 × µ2 on S = A× B (rectangles).

35. (Theorem 1.7.2) State (and prove) Fubini’s theorem.

36. (Completion of measure space) Let (Ω,F , µ) be a measure space.

(1) Define its completion (Ω, F̃ , µ̃).

(2) Show that F̃ is a σ-algebra.

(3) Show that µ̃ is well-defined.

(4) Show that (Ω, F̃ , µ̃) is a measure space

(5) Show that (Ω, F̃ , µ̃) is complete.

Chapter 2. Law of Large Numbers

1. (Definition) State the definition of independence for the following items.

(1) Events A,B ∈ F

(2) Random variables X,Y on F

(3) σ-algebras F ,G

(4) σ-algebras F1, ...,Fn

(5) Random variables X1, ..., Xn
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(6) Events A1, ..., An ∈ F

2. (Theorem 2.1.1)

(1) Show that random variables X,Y are independent ⇒ σ[X], σ[Y ] are inde-
pendent.

(2) Suppose that sub σ−algebras F1,F2 are independent and X,Y are F1-
measurable and F2-measurable. Show that X,Y are independent.

3. (Theorem 2.1.2)

(1) Two events A,B are independent. Show that Ac, B, A,Bc, Ac, Bc are also
independent.

(2) Show that A,B are independent ⇔ IA, IB are independent.

4. (Theorem 2.1.3) Show that independence of A1, ..., An implies independence of
IA1 , ...IA2 . (hint: You may first consider the independence of Ac1, A2, ..., An.)

5. (Example 2.1.4) Show that pairwise independence does not imply independence
by giving an example.

6. (Theorem 2.1.7) Suppose that A1, ...An are independent families of events and
are π-systems. Show that σ[A1], ..., σ[An] are also independent.

7. (Theorem 2.1.8) Show that P (X1 ≤ x1, · · · , Xn ≤ xn) =
∏n
i=1 P (Xi ≤ xi)

implies independence of X1, ..., Xn.

8. (Theorem 2.1.9) Suppose that {Fi,j}i=1,2...n;j=1,2...mi are independent of each
other and are sub σ-algebras of F . Let Gi = σ(∪mi

j=1Fi,j). Show that G1, ...Gn are
independent.

9. (Theorem 2.1.10) Suppose that random variables {Xi,j}i=1,2...n;j=1,2...mi on a
probability space (Ω,F , P ) are independent. Let fi be a Borel measurable function
Rmi → R. Show that random variables {fi(Xi,1(ω), ..., Xi,mi(ω))}(i = 1, 2, ...n) are
independent.

10. (Theorem 2.1.11) Suppose X1, X2, ...Xn are mutually independent. Each ran-
dom variable has distribution µi((−∞, x]) = P (Xi ≤ x). Show that a random vector
(X1, ..., Xn) has a distribution of µ1 × ... × µn, where µ1 × ... × µn is a measure on
(Rn,B(Rn)) which satiefies µ1× ...×µn((−∞, x1]× ...× (−∞, xn]) =

∏n
i=1 µi((−∞, xi])

for all x1, ...., xn ∈ R.

11. (Theorem 2.1.12) Suppoose X,Y are independent and have distributions µ, ν.
Let h be a borel measurable function from R2 to R1 which is non-negative or satisfies
E[|h|(X,Y )] <∞. Show that E[h(X,Y )] =

∫
R
∫
R h(x, y)µ(dx)ν(dy).

12. (Example 2.1.4) Show that E[XY ] = E[X]E[Y ] (uncorrelated) does not imply
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independence by giving a counter example.

13. (Theorem 2.1.15) If X,Y are independent and have distribution function F,G
respectively. Show that P (X + Y ≤ z) =

∫
F (z − y)dG(y).

14. (Theorem 2.1.16) Suppose that X with density f and Y with distribution
function G are independent. Then X + Y has density h(x) =

∫
f(x − y)dG(y). Prove

this statement.

15. (Theorem 2.1.21) Prove the Kolmogorov’s extension theorem. Suppose we
are given probability measure µn on (Rn,B(Rn)). Each of them is consistent, that is,
µn+1((a1, b1]× ...×(an, bn]×R) = µn((a1, b1]× ...×(an, bn]). Show that there is a unique
measure on RN,B(RN) with P ({ω|ωi ∈ (ai, bi], 1 ≤ i ≤ n}) = µn((a1, b1]× ...(an, bn]).

16. (Additional Theorem) In the proof of Theorem 2.1.21, it might be helpful to
show the following facts. Let R be a ring (an algebra is also a ring), and let µ be a set
function with finite additivity on R. Then, (a) µ has countable additivity ⇔ (b) µ has
sub-countable additivity ⇔ (c) µ is continuous from below ⇒ (d) µ is continuous from
abobe ⇐ (e) {An} : µ(A1) <∞, An ↘ ∅, then limn→ µ(An) = 0. Especially when µ is a
finite, then (e) ⇒ (a).

17. (Theorem 2.1.22)

(1) State the definition for a measurable space (S,S) to be nice.

(2) If S is a Borel subset of a complete separable metric space M , and S is the
collection of Borel subsets of S. Show that (S,S) is nice.

18. (Exercise 2.1.3) Let ρ(x, y) be a metric. Suppose h is differentiable with h(0) =
0, h′(x) > 0(x > 0) and h′(x) is decreasing on [0,∞). Show that h(ρ(x, y)) is a metric.
Show that h(x) = x/(x+ 1) satisfies the conditions.

19. (Exercise 2.1.4) Let Ω = (0, 1),F = B((0, 1)), P = µ,Xn(ω) = sin(2πnω).
Show that Xn(ω) are uncorrelated but not independent.

20. (Exercise 2.1.5) Show that if X,Y are independent with distributions µ, ν then
P (X+Y = 0) =

∑
y µ({−y})ν({y}). Also conclude that if X has continuous distribution

P (X = Y ) = 0. (hint) You should be careful of the fact that the number of discontinuous
points are at most countable.

21. (Exercise 2.1.15) If we want an infinite sequence of coin tossings, we do not
have to use Kolmogorov’s theorem. Let Ω be the unit interval (0, 1) equipped with the
Borel sets F and Lebesgue measure P . Let Yn(ω) = 1 if [2nω] is odd and = 0 if [2nω] is
even. Show that Y1, Y2.... are independent with P (Yk = 0) = P (Yk = 1) = 1/2.

22. (Theorem 2.2.1) State and prove the finite additivity of variance, that is, V [X1+
...+ Vn] =

∑n
i=1 V [Xi] when X ′is are uncorrelated.

23. (Lemma 2.2.1) Give an sufficient condition for Zn to converge in probability.
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(hint: You may think of the relationship between Lp convergence and converge in mea-
sure.)

24. (Example 2.2.4) Prove the Weierstrass approximation via Bernstein Polyno-
mial. limn→∞ supx∈[0,1] |f(x) − fn(x)| = 0 where fn is Bernstein polynomial of degree
n.

25. (Theorem 2.2.6) Let µ = E[Sn], σ2n = V [Sn]. If σ2n/b
2
n → 0, then (Sn −

µn)/bn
P−→ 0.

26. (Example 2.2.7) State the Coupon Collector’s problem. You must verify the

number of total trials Tn has Tn/n log(n)
P−→ 1.

27. (Theorem 2.2.11) Prove week law for triangular arrays. Let Xn,k(1 ≤ k ≤ n)
be independent. Let bn → ∞ and let ˜Xn,k = Xn,kI{|Xn,k|≤bn}. Let an = E[

∑n
k=1 X̃n,k].

First give two sufficient conditions for (Sn− an)/bn
P−→ 0. And also show that under the

conditions it will converge to 0 in probability.

28. (Theorem 2.2.12 Week law of large numbers) Let X1, X2...Xn be i.i.d random
variables. Suppose xP (|Xi| > x) → 0 as x → ∞. Let Sn =

∑n
i=1Xi and µn =

E[X1I{|X1|≤n}]. Show that Sn/n− µn
P−→ 0.

29. (Theorem 2.2.14) Let X1, X2...Xn be i.i.d random variables with E|Xi| < ∞..
Show that Sn/n

P−→ µ.

30. (Exercise 2.2.1) Let X1, X2... be uncorrelated with E[Xi] = µi and V [Xi]/i→ 0

as i→∞. Let Sn = X1 + ...+Xn and νn = E[Sn]/n then as n→∞, Sn/n− νn
L2

−→ 0
thus also in probability.

31. (Exercise 2.2.2) The L2 week law generalizes immediately to cetertain depen-
dent sequences. Suppose E[Xn] = 0 and E[XnXm] ≤ r(n −m)(n ≥ m) with r(k) → 0

as k →∞. (r(k) is a function of k ∈ N) Show that (X1 + ...Xn)/n
P−→ 0.

32. (Exercise 2.2.3 Monte Carlo integration ) Let f be a measurable function on
[0, 1] with

∫ 1
0 |f(x)|dx < ∞. Let U1, ... be independent and uniformly distributed on

[0, 1] and let In = n−1(f(U1) + f(U2) + ...f(Un)). Show that In
P−→ I :=

∫ 1
0 fdx.

Moreover, we suppose
∫ 1
0 |f(x)|2dx < ∞. Then use Chevyshev’s inequality to estimate

P (|In − I| > a/n1/2).

33. (Exercise 2.2.4) Let X1, X2...be iid with P (Xi = (−1)kk) = C/k2 log(k)(k ≥ 2)
where C is a constatnt to make the sum of the probabilities equals to 1. Show that

E|Xi| =∞, but there is a finite constatnt µ so that Sn/n
P−→ µ.

34. (Exercise 2.2.5) Let X1, X2... be iid with P (Xi > x) = e/x log(x) for x ≥ e.

Show that E|Xi| =∞ but there is a sequence of constants µn →∞ so that Sn/n−µn
P−→
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0.

35. (Exercise 2.2.6) Show that when X is a non-negative integer valued random
variable. Show that E[X] =

∑
n≥1 P (X ≥ n). Find a similar expression for E[X2].

36. (Exercise 2.2.7) Generalize Lemma 2.2.13 to conlude that ifH(x)0
∫
(−∞,x] h(y)dy

with h(y) ≥ 0, then E[H(X)] =
∫
R h(y)P (X ≥ y)dy. An important special case is

H(x) = exp(θx) with θ > 0.

37. (Ch2.3) Give an equivalent statement with Xn
a.s−−→ 0. Show that these two

statements are equivalent.

38. (Theorem 2.3.1 Borel-Cantelli’s Lemma I) State the First Borel-Cantelli’s lemma
and prove it.

39. (Theorem 2.3.2) Give an equivalent statement with Xn
P−→ X and prove that

they are equivalent. If possible, give an equivalent statement with fn
µ−→ f and prove

that they are equivalent. (µ is not necessarily a finite measure.)

40. (Theorem 2.3.3) Give an equivalent statement with yn → y on a topological
space and prove that they are equivalent.

41. (Theorem 2.3.4) First recall the bouded convergence theorem. When Xn
a.s−−→ X

and supn≥1 |Xn| < ∞, limn→∞E[Xn] = E[X]. Show that Xn
a.s−−→ X can be replaced

with Xn
P−→ X.

42. (Theorem 2.3.5 SLLN with finite fourth moment) Suppose X1, X2, ...Xn... are
identically independently distributed with E[Xi] = µ,E[X4

i ] <∞. Show that Sn/n
a.s−−→

µ where Sn =
∑n

j=1Xj .

43. (Theorem 2.3.7 Borel-Cantelli’s lemma II) State the Second Botel-Cantelli’s
lemma and prove it.

44. (Theorem 2.3.8) Suppose that X1, ...Xn are iid with E[|X1|] = ∞. Show the
following statements.

(1) P (|Xn| ≥ n i.o) = 1

(2) P (limn→ Sn/n exists in R) = 0

45. (Theorem 2.3.9) Suppose thatA1, A2, ... are pairwise independent and
∑∞

n=1 P (An) =

∞. Show that
∑n

k=1 IAk
(ω)/

∑n
k=1 P (Ak)

a.s−−→ 1.

46. (Example 2.3.12 Head runs) Let Xn, n ∈ Z be iid with P (Xn = 1) = P (Xn =
−1) = 1/2. Let ln = max{m|Xn−m+1 = Xn−m+2 · · · = Xn = 1} be the longest run at
time n and let Ln = max1≤m≤n{lm}. Now show that Ln/ log2(n)

a.s−−→ 1.

47. (Exercise 2.3.4) In Theorem 2.3.4, we have alreday shown that in bounded
convergence theorem, the almost surely convergence can be replaced with convergence
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in probability. How about Fatou’s lemma? Now suppose Xn ≥ 0 and Xn
P−→ X and

state and prove the alternative version of Fatou’s lemma.

48. (Exercise 2.3.5 Lebesgue’s Dominated Convergence Theorem)

(1) Similaly, state and prove the Lebesgue’s Dominated Convergence Theorem
with convergence probability.

(2) In Theorem 1.6.8, we supposed that Xn
a.s−−→ X. Show that this condition

also can be replaced with Xn
P−→ X.

49. (Additional Theorem) In Exercise 2.3.5, it might be helpful for you to show the

following lemma. If Xn
P−→ X, then for any positive number p ∈ (0,∞) and M ∈ C(|X|)

(set of continuous points of cdf of |X|), |Xn|pI{|Xn|≤M}
P−→ |X|pI{|X|≤M}

50. (Exercise 2.3.6 Metric for convergence in probability) Consider (X , d), d : X 2 →
[0,∞] where X is set of random variables on (Ω,F , P ). We define d(X,Y ) = E[ |X−Y |1+|X−Y | ].

(1) Show that (X , d) is a matric space. .

(2) Show that d(Xn, X)→ 0(n→∞)⇔ Xn
P−→ X.

51. (Exercise 2.3.7 Completeness of a metric space) Show that the metric space
defined in the previous question is complete. Completeness means: when {Xn}n≥1 is a
Cauchy sequence on (X , d), there always exists X ∈ X where d(Xn, X)→ 0 (asn→∞).

52. (Exercise 2.3.8) Suppose that {An} are independent with P (An) < 1. Show
that P (∪An) = 1 implies

∑
n≥1 P (An) =∞.

53. (Exercise 2.3.9) Show the following statements.

(1) P (An)→ 0 and
∑∞

n=1 P (An+1 \An) <∞, then P (An i.o) = 0

(2) Find an example of a sequence An to which the result of the previous ques-
tion is applied but the Borel-Cantelli’s lemma cannot.

54. (Exercise 2.3.11) Let X1, X2... be independent with P (Xn = 1) = pn and
P (Xn = 0) = 1− pn. Show the following statements.

(1) Xn
P−→ 0⇔ pn → 0

(2) Xn
a.s−−→ 0⇔

∑∞
n=1 pn <∞

55. (Exercise 2.3.13) If Xn is any sequence of random variables, there are constants
cn →∞ so that Xn/cn → 0(a.s).

56. (Exercise 2.3.14) Let X1, X2, ... be independent. Show that supn≥1Xn <
∞(a.s) ⇔

∑
n≥1 P (Xn > A) <∞ for some A.
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57. (Exercise 2.3.15) Let X1, X2... be iid with P (Xi > x) = exp(−x), let Mn =
max1≤m≤nXm. Show the following statements.

(1) lim supn→∞Xn/ log(n) = 1(a.s)

(2) Mn/ log(n)
a.s−−→ 1

58. (Exercise 2.3.16) Let X1, X2... be iid with distribution F , let λn ↗ ∞ and
let An = {max1≤m≤nXm > λn}. Show that P (Ani.o) = 0, 1 according as

∑
n≥1(1 −

F (λn)) <∞,=∞. (hint) You may first show that {Ani.o} = {Xn > λni.o}. Try to put
rn1 = min{m|Xm > λn1}.

59. (Exercise 2.3.17) Let Y1, Y2... be iid. Find necessary and sufficient conditions
for the following statements. (hint) lim supn→∞(max1≤m≤n Ym)/n = lim supn→∞ Y

+
n /n.

Also, lim infn→∞(max1≤m≤n Ym)/n ≥ 0.

(1) Yn/n
a.s−−→ 0

(2) (max1≤m≤n Ym)/n
a.s−−→ 0

(3) (max1≤m≤n Ym)/n
P−→ 0

(4) Yn/n
P−→ 0

60. (Additional Theorem) Suppose bn ≥ 0 and bn ↗∞. LetMn = max{a1, a2, · · · , an}.
Show that lim supn→∞Mn/bn = lim supn→∞ a

+
n /bn.

61. (Exercise 2.3.19) LetXn be independent Poisson random variables with E[Xn] =
λn and let Sn =

∑n
m=1Xm. Show that if

∑
n≥1 λn =∞ then Sn/E[Sn]

a.s−−→ 1.

62. Prove the following lemmas.

(1) (Lemma 2.4.2) In Theorem 2.4.1, let Yk(ω) = XkI{|Xk|≤k}(ω) and Tn =
Y1 + · · ·+ Yn. Show that it is sufficient to prove Tn/n→ µ(a.s).

(2) (Lemma 2.4.3) In Lemma 2.4.2, show that
∑∞

k=1 V [Yk]/k
2 ≤ 4E|X1| <∞.

(3) (Lemma 2.4.4) Show that if y > 0, then 2y
∑

k>y k
−2 ≤ 4.

63. (Theorem 2.4.1 Strong law of large numbers) Let X1, X2, · · · be pairwise in-
dependent identically distributed variables with E[Xi] < ∞. Let E[Xi] = µ and
Sn = X1 + · · ·+Xn. Show that Sn/n→ µ(a.s) as n→∞.

64. (Theorem 2.4.5) Let X1, X2 be iid with E[X+
1 ] = ∞, E[X−1 ] < ∞. Show that

Sn/n→∞.

65. (Example 2.4.6 and Theorem 2.4.7) Let X1, X2... be iid with 0 < Xi <∞. Let
Tn = X1 + ...+Xn. You may think that Tn is the time of n− th occurence some event.
Let Nt = sup{n|Tn ≤ t}. Now suppose E[X1] = µ ≤ ∞. Show that when t → ∞,
Nt/t→ 1/µ (a.s)
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66. (Example 2.5.7) Verify that the following events are in or not in tail σ-field.

(1) {limn→∞ Sn exists } ∈ T

(2) {lim supn→∞ Sn > 0} 6∈ T

(3) {lim supn→∞ Sn/cn > x} ∈ T if cn →∞

67. (Theorem 2.5.3 Kolmogorov’s 0-1 law) If X1, X2... are independent and A ∈ T
then P (A) = 0, 1.

68. (Theorem 2.5.5) State and Prove Kolmogorov’s maximal inequality. (hint)
Suppose X1, X2, ... are independent and E[Xi] = 0, V [Xi] < ∞, Sn =

∑n
k=1Xk. Then

P (max1≤k≤n |Sk| ≥ x) ≤ x−2V[Sn].

69. (Theorem 2.5.6) State and Prove Kolmogorov’s two series theorem. (hint)
X1, X2... are independent and E[Xn] = 0. If

∑∞
n=1 V[Xn] < ∞, then

∑∞
n=1Xn(ω)

converges almost surely.

70. (Theorem 2.5.8) State and Prove Kolmogorov’s three series theorem. (hint)
Let X1, X2... be independent and let A > 0. Let Yi = XiI{|Xi|≤A}. Give three necessary
and sufficient conditions for

∑
n∈NXn(ω) to converge almost surely.

71. (Theorem 2.5.9) State and Prove Kronecker’s lemma. (hint) an ↗ ∞ and∑
n∈N xn/an converges. Then a−1n

∑n
m=1 xm → 0.

72. (Theorem 2.5.10) Give an alternative proof of SLLN using Kolmogorov’s three
series theorem and kronecker’s lemma.

73. (Theorem 2.5.11) Let X1, X2... be iid random variables with E[Xi] = 0 and
E[X2

i ] = σ2 < ∞. Let Sn = X1 + · · · + Xn. Show that for any positive number ε, we

have Sn/n
1/2(log(n))1/2+ε

a.s−−→ 0.

74. (Exercise 2.5.2) Let p > 0. If Sn/n
1/p → 0 (a.s.) then E|X1|p < ∞. (This is

converse of Theorem 2.5.12)

75. (Exercise 2.5.3) Let X1, X2, ... be iid standard normals. Show that for any t,∑∞
n=1Xn sin(nπt)/n converges almost surely.

76. (Exercise 2.5.5) Let Xn ≥ 0 be independent for n ≥ 1. Show that the following
are equivalent.

(1)
∑∞

n=1Xn <∞ (a.s)

(2)
∑∞

n=1 P (Xn > 1) + E[XnI{Xn≤1}] <∞

(3)
∑

n=1E[Xn/(1 +Xn)] <∞.

77. (Exercise 2.5.6) Let φ(x) = x2 when |x| ≤ 1 and = |x| when |x| ≥ 1. Show that
if X1, X2, .... are independent with E[Xn] = 0 and

∑∞
n=1E[φ(Xn)] <∞, then

∑∞
n≥1Xn

11



converges almost surely.

78. (Exercise 2.5.7) Let {Xn} be independent random variables. Suppose
∑∞

n≥1E|Xn|p(n) <
∞ where 0 < p(n) ≤ 2 for all n and E[Xn] = 0 when p(n) > 1. Show that

∑∞
n=1Xn

converges almost surely.

79. (Exercise 2.5.8) Let X1, X2... be iid and not ≡ 0. Then radius of convergence
of the power series

∑
n≥1Xn(ω)zn is 1 a.s or 0 a.s according as E[log+ |X1|] < ∞ or

= ∞, where log+(x) = max{log(x), 0}. The radius of convergence is r(ω) = sup{c ≥
0|
∑
|Xn(ω)|cn <∞}. (hint.) The radius of convergence is equal to (lim supn→∞ |Xn|1/n)−1.

80. (Exercise 2.5.9) Let X1, X2, ... be independent and let Sm,n = Xm+1+ · · ·+Xn.
Show the following inequality. P (maxm<j≤n |Sm,j | > 2a) minm<k≤n P (|Sk,n| ≤ a) ≤
P (|Sm,n| > a).

81. (Exercise 2.5.10) Use the inequality in Exercise 2.5.9 and prove a theorem of
P.Levy. Let X1, X2... be independent and let Sn = X1 + · · ·Xn. If limn→∞ Sn exists in
probability, then it also exists a.s.

82. (Exercise 2.5.11) Let X1, X2... be iid and Sn = X1 +X2 · · ·+Xn. Use the in-
equality in Exercise 2.5.9 and prove that if Sn/n→ 0 in probability, then max1≤m≤n Sm/n→
0 in probability.

83. (Exercise 2.5.12) Let X1, X2... be iid ans Sn = X1 + · · ·Xn. Supose a(n)↗∞
and a(2n)/a(2n−1) is bounded.

(1) Use the inequality in Exercise 2.5.9 and show that if Sn/a(n)
P−→ 0 and

S2n/a(2n)
a.s−−→ 0 and then Sn/a(n)

a.s−−→ 0.

(2) Suppose in additiion that E[X1] = 0 and E[X2
1 ] < ∞. Use the previous

exercise and Chebyshev’s inequality to show that Sn/n
1/2(log2 n)1/2+ε

a.s−−→ 0.

Chapter 3. Central Limit Theorem

1. (Resnick. Lemma 8.1) A distribution function F (x) is determined on a dense
set. Let D be dense in R. Suppose FD(•) is defined on D and satisfies the folloinwg:

• FD(•) is non-decreasing on D.

• 0 ≤ FD(x) ≤ 1 for ∀x ∈ D.

• limx∈D,x→+∞ FD(x) = 1, limx∈D,x→−∞ FD(x) = 0.

Define for all x ∈ R, F (x) := infy>x,y∈D FD(y) = limy↘x,y∈D FD(y). Show that F is
a right continuous probability distribution function. Thus, any two right continuous
distribution function’s agreeing on a dense set will agree everywhere.
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2. (Resnick. Four definitions) State the following four different types of conver-
gence.

• vague convergence

• proper convergence

• weak convergence

• complete convergence

3. (Resnick. Example) Give an example of Fn(x) which does not converge for any
x thus whose weak convergence fails, however which vaguely converges.

4. (Resnick. Theorem 8.1.1: Equivalence of the Four Definitions) Show that if F
is proper, then the four definitions above are all equivalent.

5. (Resnick. Example 8.1.1) Give an example of a sequence of random variables
{Xn} which converges in distribution but almost surely nor in probability.

6. (Resnick. 8.2) Regarding a sequence of distribution functions, state the defini-
tions of two types of convergence which are stronger than weak convergence.

7. (Resnick. Example 8.2.1) Show that strong convergence is stronger than weak
convergence by giving an example.

8. (Resnick. Lemma 8.2.1) Suppose that {F}n≥1∪{F} are probability distribution
functions with densities {fn}n≥1 ∪ {f}. Then show the following statements.

(1) supB∈B(R) |Fn(B)− F (B)| = 1
2

∫
|fn(x)− f(x)|dx

(2) In addition, if fn(x)
a.e−−→ f , then

∫
|fn(x)− f(x)|dx→ 0.

9. (Exercise 3.1.1) A triangle array of real numbers cj,n satisfies the following three
conditions. Show that

∏n
j=1(1 + cj,n)→ eλ.

• max1≤j≤n |cj,n| → 0

•
∑n

j=1 cj,n → λ

• supn
∑n

j=1 |cj,n| <∞

10. (Theorem 3.2.8 Skorokhod’s Representation Theorem) Suppose Fn, F are dis-
tribution functions and suppose Fn

w−→ F . Show that there exists a probability space
and random variables Yn ∼ Fn, Y ∼ F, Yn

a.s−−→ Y .

11. (Theorem 3.2.9) Give an equivalent statement with Xn
d−→ X involving a

bounded continuous function g.

12. (Theorem 3.2.10 Continuous Mapping Theorem)
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(1) State what is continuous mapping theorem.

(2) Prove continuous mapping theorem.

13. (Theorem 3.2.11) Fill in the blank so that the following statements are all
equivalent.

• Xn
d−→ X

• For all open sets G, ( • ) ≥ ( • ).

• For all closed sets K, ( • ) ≤ ( • ).

• For all borel sets A with ( • ), ( • ) = ( • ).

14. (Theorem 3.2.12 Helly’s Selection Theorem) For every sequence {Fn}n≥1 of dis-
tribution functions, there is a sub-sequence Fn(k) and a right continuous non-decreasing
function F (this is not necessarily a distribution function) so that limk→∞ Fn(k) → F at
all continuity points of F .

15. (Theorem 3.2.13 An equivalent statement with a sequence of df being tight)
Let {Fn}n≥1 be a sequence of distribution functions.

(1) State the definition of {Fn} being tight.

(2) Show that if a subsequence of {Fn} : Fn(k)
w−→ F , then F is a distribution

function ⇔ {Fn} is tight.

16. (Theorem 3.2.14) If there is a φ ≥ 0 so that φ(x) → ∞ as |x| → ∞ and
C = supn∈N

∫
φ(x)dFn(x) <∞ then Fn is tight.

17. (Exercise 3.2.1) Give an example of random variables Xn with densities fn so

that Xn
d−→ U ∼ Uniform(0, 1) but fn(x) does not converge to 1 for any x ∈ [0, 1].

18. (Exercise 3.2.2 Convergence of maxima) Let X1, X2, · · · be independent with
distribution F and let Mn = max{X1, · · ·Xn}. Then P (Mn ≤ x) = F (x)n. Prove the
following statements.

(1) If F (x) = 1 − x−α for x ≥ 1 where α > 0 then for y > 0 we have
P (Mn/n

1/α ≤ y)→ exp(−y−α).

(2) If F (x) = 1 − |x|β for −1 ≤ x ≤ 0 where β > 0 then for y < 0 we have
P (n1/βMn ≤ y)→ exp(−|y|β).

(3) If F (x) = 1− e−x for x ≥ 0 then for ∀y ∈ R we have P (Mn − log n ≤ y)→
exp(−e−y).

19. (Exercise 3.2.4 Fatou’s Lemma) Let g ≥ 0 be continuous. If Xn
d−→ X, then

lim infn→∞E[g(Xn)] ≥ E[g(X)].
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20. (Exercise 3.2.5 Integration to the limit) Suppose g, h are continuous with g(x) >
0 and |h(x)|/g(x) → 0 as |x| → ∞. If Fn

w−→ F and
∫
gdFn(x) ≤ C < ∞ then∫

h(x)dFn(x)→
∫
h(x)dF (x).

21. (Exercise 3.2.9) If Fn
w−→ F and F is continuous then supx |Fn(x)−F (x)| → 0.

22. (Theorem 2.4.9) State and prove Glivenko Cantelli’s lemma.

23. (Exercise 3.2.12) Show that Xn
P−→ X then Xn

d−→ X and conversely if Xn
d−→ c,

where c is a constant then Xn
P−→ c.

24. (Exercise 3.2.13 Converting together lemma) If Xn
d−→ X,Yn

d−→ c where c is a

constant then Xn + Yn
d−→ X + c. A useful consequence of this result is that if Xn

d−→ X

and Zn −Xn
d−→ 0 then Zn

d−→ X.

25. (Exercise 3.2.14) Suppose Xn
d−→ X,Yn ≥ 0 and Yn

d−→ c where c > 0 is a

constant. Then XnYn
d−→ cX. This result is true without the assumptions that Yn ≥ 0

and c > 0.. We have imposed these only to make the proof less tedious. (Note) Actually

you may use the conclusion of Exercise 3.2.13. If XnYn − cXn
d−→ 0 and cXn

d−→ cX then

XnYn
d−→ cX. So you may first prove XnYn − cXn

P−→ 0.

26. (Exercise 3.2.16) Suppose Yn ≥ 0, E[Y α
n ] → 1 and E[Y β

n ] → 1 for some 0 <

α < β. Show that Yn
P−→ 1.

27. (Theorem 3.3.11 The inversion formula)

(1) The inversion formula states that limT→∞
1
2π

∫ T
−T

e−ita−e−itb

it φ(t)dt = ( • ).
Fill in the blank in the equation.

(2) Prove the inversion formula.

28. (Additional Lemma) Show that |
∫ T
0

sinx
x − π

2 | ≤
T+1
T 2 and supy>0 S(y) < ∞

where S(T ) =
∫ T
0

sin(x)
x dx. (hint) First you may rewrite

∫ T
0

sinx
x =

∫ x=T
x=0 sinxdx

∫∞
0 e−xydy.

To verify that Fubini’s theorem is applicable, you may use the fact that | sinxe−xy| ≤
xe−xy(x, y > 0).

29. (Theorem 3.3.14) Show that if
∫
|φ(t)|dt <∞ then µ has bounded continuous

density f(y) = 1
2π

∫
e−ityφ(t)dt.

30. (Exercise 3.3.1) Show that φ is a chf then Re(φ) and |φ|2 are also characteristic
functions.

31. (Exercise 3.3.2) Answer the following questions.

(1) Imitate the proof of Theorem 3.3.11 to show that µ({a}) = limT→∞
1
2T

∫ T
−T e

−itaφ(t)dt.

(2) Show that if P (X ∈ hZ) = 1 where h > 0, then its chf has φ(2π/h+t) = φ(t)
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so P (X = x) = h
2π

∫ π/h
−π/h e

−itxφ(t)dt for x ∈ hZ.

(3) Show that if X + b then E[exp(itX)] = eitbE[exp(itY )]. So if P (X ∈ b +
hZ) = 1, the inversion formula in (2) is valid for x ∈ b+ hZ.

32.

(1) (Example 3.3.10, 3.3.16) Find the characteristic function of Lhaplus distri-
bution. Use Theorem 3.3.14 to find the characteristic function of Cauchy distribution.

(2) (Exercise 3.3.6) Use the result in Example 3.3.16 to conclude that ifX1, X2 · · ·
are independent and have the Cauchy distribution, then X̄n has the same distribution
as X1.

33. (Theorem 3.3.17 Continuity Theorem)

(1) Let {µn} ∪ {µ} be probability measures with chf φn(t) and φ(t). Show that

if µn
d−→ µ then φn(t)→ φ(t) for all t ∈ R.

(2) Let {µn} be probability measures with chf φn(t). Suppose that φn(t)→ φ(t)
for all t ∈ R and suppose that φ(t) is continuous at t = 0. (This is not necessarily a

characteristic function.) Show that {µn} is tight and µn
d−→ µ where µ has chf φ(t).

34. (Exercise 3.3.7) Suppose that Xn
d−→ X and Xn has a normal distribution with

mean 0 and variances σ2n. Prove that σ2n → σ2 ∈ [0,∞).

35. (Exercise 3.3.8) Show that if Xn and Yn are independent for 1 ≤ n ≤ ∞,

Xn
d−→ X and Yn

d−→ Y , then Xn + Yn
d−→ X + Y .

36. (Lemma 3.3.19) Answer the following questions.

(1) Show |eix −
∑n

m=0
(ix)m

m! | ≤ min{ |x|
n+1

(n+1)! ,
2|x|n
n! }.

(2) If you put x = tX, what result do you obtain?

37. (Theorem 3.3.18) Use Lemma 3.3.19 and prove if
∫
R |x|

nµ(dx) < ∞ ⇒ then

φ(n)(t) =
∫
R(ix)neitxµ(dx). (hint) You do not have to use lemma in Appendix. You may

find an upper bound of |(φ(t+h)−φ(t))/h| which is not related with h by using Lemma
3.3.19. Finally use Lebesgue Dominated Convergence Theorem.

38. (Theorem 3.3.20) Suppose E[X2] < ∞. Show that φ(t) = 1 + itE[X] −
t2E[X2]/2 + o(t2). (Note) o(t2) means o(t2)/t2 → 0 as t → 0. So you must prove
that the error term (φ(t)− (1 + itE[X]− t2E[X2]/2))/t2 → 0 as t→ 0.

39. (Theorem 3.3.21) Prove if lim suph↘0{φ(h)− 2φ(0) + φ(−h)}/h2 > −∞, then
E|X|2 <∞.

40. (Exercise 3.3.12) Use Theorem 3.3.18 and the series expansion for e−t
2/2 to
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show that the standard normal distribution has E[X2n] = (2n)!/2nn!.

41. (Exercise 3.3.13) Answer the following questions.

(1) Suppose that a family of measure {µi}i∈I is tight. In other words, supi∈I µi([−M,M ]c)→
0 as M →∞. Use (d) in Theorem 3.3.1 and (3.3.3) with n = 0 to show that their char-
acteristic functions φi are (uniformly) equicontinuous.

(2) Suppose µn
d−→ µ. Use Theorem 3.3.17 and equicontinuity to conclude that

the φn(t)→ φ(t) uniformly on compact sets.

42. (Exercise 3.3.14) Let X1, X2 · · · be iid with characteristic function φ(t) and let
Sn = X1 +X2 · · ·Xn.

(1) Show that φ′(0) = ia, then Sn/n
P−→ a.

(2) Show that if Sn/n
P−→ a, then φ(t/n)n → eita as n↗∞ (n ∈ N).

(3) Use (2) and the uniform continuity established in (d) of Theorem 3.3.1 to
show that (φ(h)− 1)/h→ −ia as h→ 0 through the positive reals. Thus the weak law
holds if and only if φ′(0) exists.

43. (Exercise 3.3.16) Show that if limt↘0(φ(t) − 1)/t2 = c > −∞ then E[X] = 0
and E[X2] = −2c <∞. In particular, if φ(t) = 1 + o(t2) then φ(t) = 1.

44. (Exercise 3.3.17) If Yn are random variables with characteristic functions {φn}
then Yn

d−→ 0 if and only if there is a δ > 0 so that φn(t)→ 1 for |t| ≤ δ.

45. (Exercise 3.3.18) LetX1, X2 · · · be independent. Show that if Sn =
∑

m=1···nXm

converges in distribution, then it converges in probability.

46. (Theorem 3.4.1 Central Limit Theorem) Let X1, X2 · · · be iid with E[Xi] =

µ, V [Xi] = σ2 ∈ (0,∞). If Sn = X1 +X2 · · ·Xn, then (Sn − nµ)/σn1/2
d−→ N (0, 1).

47. Prove the following lemma and theorem.

(1) (Lemma 3.4.3) Let z1, · · · zn and w1 · · ·wn be complex numbers of modulus
≤ θ. Show that |

∏n
m=1 zm −

∏n
m=1wm| ≤ θn−1

∑n
m=1 |zm − wm|.

(2) (Lemma 3.4.4) Show that if b is a complex number with |b| ≤ 1 then |eb −
(1 + b)| ≤ |b|2.

(3) (Theorem 3.4.2) Show that {cn}∪{c} ⊂ C and cn → c then (1+cn/n)n → ec.

48. (Example 3.4.9) Though pairwise independent is good enough for the strong
law of large numbers, however it is not good enough for the central limit theorem. Give
an example to show this statement.

49. (Exercise 3.4.1) Suppose you roll a die 180 times. Use the normal approximation
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to estimate the probability you will get fewer than 25 sixes.

50. (Exercise 3.4.4) Let X1, X2, · · · be iid with Xi ≥ 0, E[Xi] = 1, V [Xi] = σ2 ∈
(0,∞). Show that 2(

√
Sn −

√
n)

d−→ N (0, σ2).

51. (Exercise 3.4.5 self-normalized sums) LetX1, X2 · · · be iid with E[Xi] = 0, E[X2
i ] =

σ2 ∈ (0,∞). Show that
∑n

m=1Xm/(
∑n

m=1X
2
m)1/2

d−→ N (0, 1).

52. (Exercise 3.4.6) Let X1, X2 · · · be iid with E[Xi] = 0, E[X2
i ] = σ2 ∈ (0,∞) and

let Sn = X1 + X2 · · ·Xn. Let Nn be a sequence of non-negative integer-valued random

ariables and an be a sequence of integers with an → ∞ and Nn/an
P−→ 1. Show that

SNn/σ
√
an

d−→ N (0, 1).

53. (Exercise 3.4.7 A central limit theorem in renewal theory) Let Y1, Y2 · · · be iid
positive random variables with E[Yi] = µ, V [Yi] = σ2 ∈ (0,∞). Let Sn = Y1 + Y2 · · ·Yn
and let Nt = sup{m|Sm ≤ t}. Apply the previous exercise to Xi = Yi − µ to prove that

as t→∞, (µNt − t)/(σ2t/µ)1/2
d−→ N (0, 1).

54. (Theorem 3.4.10 The Lindeberg-Feller theorem) Let {Xn,m}{m=1···n;n∈N} be in-
dependent random variables with E[Xn,m] = 0. We suppose the following two conditions.

•
∑n

m=1E[X2
n,m]→ σ2 > 0.

• For all ε > 0, limn→∞
∑n

m=1E[|Xn,m|2 · I{|Xn,m|>ε}] = 0.

Then Sn = X1 +X2 · · ·Xn
d−→ N (0, σ2).

55. (Example 3.4.11 Cycles in a random permutation and record values) Let Y1, Y2 · · ·
be independent with P (Ym = 1) = 1/m,P (Ym = 0) = 1 − 1/m. Show that (Sn −
log(n))/(log(n))1/2

d−→ N (0, 1).

56. (Example 3.4.12) Prove the Kolmogorov’s three series theorem by applying
Lindeberg-Feller’s theorem.

57. (Exercise 3.4.9) Let X1, X2 . . . be independent and let Sn =
∑n

m=1Xm. Sup-
pose P (Xm = m) = P (Xm = −m) = m−2/2(m ≥ 2) and P (Xm = 1) = P (Xm = −1) =

(1 −m−2)/2. Show that V [Sn]/n → 2 but Sn/
√
n

d−→ N (0, 1). The trouble here is that
Xn,m = Xm/

√
n does not satisfy the second condition of Theorem 3.4.10.

58. (Exercise 3.4.10) Let X1, X2 . . . be independent and let Sn =
∑n

m=1Xm. Show

that if |Xi| ≤M and
∑

n≥1 V [Xn] =∞,then (Sn − E[Sn])/
√
V [Sn]

d−→ N (0, 1).

59. (Exercise 3.4.11) Let X1, X2 . . . be independent and let Sn =
∑n

m=1Xm. Su-
pose that E[Xi] = 0, E[X2

i ] = 1 and E[|Xi|2+δ] ≤ C for some δ > 0 and C < ∞. Show

that Sn/
√
n

d−→ N (0, 1).
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60. (Exercise 3.4.12 Lyapunov’s theorem) Let X1, X2 . . . be independent and let

Sn =
∑n

m=1Xm. Let αn = V [Sn]1/2. If there is a δ > 0 so that limn→∞ α
−(2+δ)
n

∑n
m=1E|Xm−

E[Xm]|2+δ = 0, then (Sn−E[Sn])/αn
d−→ N (0, 1). Note that the previous exercise is the

special case of this result.

Chapter 4. Martingales

We refer to Durret’s Probability Theory ver 4.1 here.

1. (Chapter 4.1 Stopping Times from ver4.1)

(1) Let N(ω) : Ω → N ∪ {∞}. State the definition of N being a stopping time
or an optimal random variable.

(2) The canonical exmaple of a stopping time is a hitting time. State the defi-
nition of the hitting time of A.

2. (Example 4.1.2 from ver4.1) Let Xi ≥ 0 and Nt = sup{n : Sn ≤ t} be the
random variable. Give a stopping time using Nt.

3. (Theorem 4.1.3 from ver4.1) Let X1, X2 · · · be iid random variables and let
Fn = σ(X1, · · ·Xn) and N be a stopping time with P (N < ∞) > 0. Conditioning
on {N < ∞}, {XN+n}n≥1 is independent of FN and has the same distribution as the
originial sequences.

4. (Theorem 4.1.5 Wald’s equation from ver4.1) Let X1, X2 · · · be iid with E|Xi| <
∞. If N is a stopping time with E[N ] <∞ then E[SN ] = E[X1]E[N ].

5. (Exercice 4.1.3 from ver 4.1) Show that if S, T are stoppping times then min{S, T}
and max{S, T} are also stopping times. Also show that min{S, n}, max{S, n} are stop-
ping times.

6. (Exercice 4.1.4 from ver 4.1) Suppose S, T are stopping times. State if S + T is
a stopping time. Give a proof or a counter example.

7. (Exercice 4.1.6 from ver 4.1) Show that M ≤ N are stopping times then FM ⊂
FN .

8. (Exercice 4.1.7 from ver 4.1) Show that if L ≤M and A ∈ FL then N = L(ω ∈
A),= M(ω ∈ Ac) is a stopping time.

From here we refer to Durret’s Probability Theory ver 5a.

9. (Definition, Lemma 4.1.1)
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(1) Consider a probability space (Ω,F0, P ) and a sub σ-algebra F ⊂ F0. Let X
be a random variable on (Ω,F0, P ) and suppose that E|X| <∞. Give the definition of
the conditional expectation of X given F .

(2) Suppose Y satisfies conditions to be E[X|F ]. Show that Y is integrable.

(3) If both Y and Y ′ satisfies conditions to be E[X|F ], then show that they are
unique in the sense of almost surely.

10. (Theorem 4.1.2) Show that if X1 = X2 on B ∈ F then E[X1|F ] = E[X2|F ]
(a.s) on B.

11. (Existence of conditional expectation)

(1) State the definition of absolute continuity of measures.

(2) State Radon-Nikodym Theorem.

(3) Show existence of conditional expectation E[X|F ].

12. (Example 4.1.3) Show that if X is F-measurable (F ⊂ F0), then E[X|F ] =
X(a.s).

13. (Example 4.1.4) Suppose X is independent of F . Show that E[X|F ] = E[X].

14. (Example 4.1.7) Suppose X,Y are independent. Let φ be a function with
E|φ(X,Y )| <∞ and let g(x) = Eφ(x, Y ). Show that E[φ(X,Y )|X] = g(X)(a.s).

15. (Theorem 4.1.9) Show the following statements are true. In the first two
parts,we assume that E|X|, E|Y | <∞.

(1) Conditional expectations have linearity.

(2) Conditional expectations have monotonicity.

(3) Suppose Xn ≥ 0, Xn ↗ X with E[X] < ∞. Then monotone convergence
theorem holds on E[Xn|F ], E[X|F ].

16. (Theorem 4.1.10 Jensen’s Inequality) If φ is convex and E|X|, E|φ(X)| < ∞
then φ(E[X|F ]) ≤ E[φ(X)|F ].

17. (Theorem 4.1.11) Show that conditional expectations is a contraction in Lp(p ≥
1).

18. (Theorem 4.1.12) Consider two sub σ-algebras F ⊂ G. Suppose E[X|G] ∈ F
then show that E[X|F ] = E[X|G].

19. (Theorem 4.1.13) Suppose F1 ⊂ F2. Show the following statements.

(1) E[E[X|F1]|F2] = E[X|F1].
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(2) E[E[X|F2]|F1] = E[X|F1].

20. (Theorem 4.1.14) Show that ifX is F-measurable random variable and E|Y |, E|XY | <
∞ then E[XY |F ] = XE[Y |F ].

21. (Theorem 4.1.15) Suppose EX2 <∞. Show that E[X|F ] is the F-measurable
random variable that minimizes mean square error.

22. (Definition 4.1.3 Regular Conditional Probabilities) Let (Ω,F , P ) be a prob-
ability space, X : (Ω,F) → (S,S) a measurable map, and G a σ-field ⊂ F . Let
µ : Ω × S → [0, 1] be a regular conditional distribution for X given G. State the
conditions for µ to satisfy.

23. (4.2 Martingales) Explain the meanings of the following terms.

(1) Fn is a filtration

(2) A sequence {Xn}n≥1 is adapted to Fn

(3) Xn is a martingale

(4) Xn is a supermartingale

(5) Xn is a submartingale

24. (Example 4.2.1 Liear martingale) Let ξ1 · · · ξn be iid random variables and let
Sn =

∑n
j=1 ξj and let Fn = σ[ξ1, · · · ξn]. Show that if µ = Eξi = 0 then Sn(n ≥ 0) is a

martingale with respect to Fn.

25. (Example 4.2.2 Quadratic martingale) Let ξ1 · · · ξn be iid random variables and
let Sn =

∑n
j=1 ξj and let Fn = σ[ξ1, · · · ξn]. Suppose that if Eξi = 0 and σ2 = Var[ξi] <

∞ then S2
n − nσ2 is a martingale.

26. (Example 4.2.3 Exponetial martingale) Let Y1, Y2 · · · be nonnegative iid ran-
dom variables with E[Ym] = 1. If Fn = σ[Y1, · · · , Yn] then Mn =

∏n
m=1 Ym defines a

martingale.

27. (Theorem 4.2.4) Show that ifXn is a supermartingale then for n > m, E[Xn|Fm] ≤
Xm.

28. (Theorem 4.2.6) Show that if Xn is a martingale with regard to Fn and φ is a
convex function with E|φ(Xn)| <∞ for all n, then φ(Xn) is a submartingale with regard
to Fn. Consequently, if p ≥ 1 and E|Xn|p <∞ for all n, then |Xn|p is a submartingale
with regard to Fn.

29. (Theorem 4.2.7) Show that if Xn is a submartingale with regard to Fn and φ is
an increasing convex function with E|φ(Xn)| <∞ for all n, then φ(Xn) is a submartin-
gale with regard to Fn. Also give some examples of φ(•).

30. Let {Fn}{n≥0} be a filtration Explain or state the definition of the following
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terms.

(1) {Hn}n≥1 is a predictable sequence.

(2) (H ·X)n

31. (Theorem 4.2.8) Let Xn(n ≥ 0) be a supermatrtingale. Suppose Hn ≥ 0 is a
predictable sequence and each Hn is bounded. Show that (H ·X)n is a supermatingale.

32. (Theorem 4.2.9) By using Theorem 4.2.8, show that if N is a stopping time
and Xn is a supermatingale, then XN∧n is a supermartingale.

33. (Theorem 4.2.10 Upcrossing Inequality) Now we consider upcrossing inequality.
If Xm(m ≥ 0) is a submartingale then (b− a)E[Un] ≤ E(Xn − a)+ − E(X0 − a)+.

(1) State the definition of Nk(N2k−1, N2k, N0)

(2) We define. Hm = 1 if N2k−1 < m ≤ N2k for some k, and 0 otherwise.
Explain Hm is a predictable sequence.

(3) State the definition of Un.

(4) State and prove the upcrossing inequality.

34. (Theorem 4.2.11 Martingale convergence theorem) If Xn is a submartingale
with supE[X+

n ] < ∞, then as n → ∞, Xn converges almost surely to a limit X with
E|X| <∞.

35. (Theorem 4.2.12) If Xn ≥ 0 is a supermartingale then as n→∞, Xn → X a.s
and E[X] ≤ E[X0].

36. (Example 4.2.13) Explain that Theorem 4.2.12 or 4.2.11 do not guarantee con-
vergence in L1 by giving an example. (S0 = 1, Sn = Sn−1 + ξn, P (ξi = 1) = P (ξi =
−1) = 1/2 where ξi are iid random variables.)

37. (Example 4.2.14) Give an example of a martingale Xn with Xn
P−→ 0 but not

almost surely.

38. (Exercise 4.2.3) Suppose Xn, Yn are submartingales with regard to Fn. Then
show that Xn ∨ Yn is also a submartingale.

39. (Exercise 4.2.6) Let Y1, Y2 · · · be nonnegative iid random variables with EYm =
1 and P (Ym = 1) < 1. We have already shown that Xn =

∏n
m=1 Ym defines a martingale.

(1) Show that Xn
a.s−−→ 0.

(2) Show that (1/n) logXn
a.s.−−→ c < 0

40. (Exercise 4.2.8) Let Xn and Yn be positive integrable and adapted to Fn.
Suppose that E[Xn+1|Fn] ≤ (1 + Yn)Xn with

∑
n≥1 Yn < ∞(a.s.). Prove that Xn
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converges a.s. to a finite limit by finding a closely related supermartingale to which
Theorem 4.2.12 can be applied.

41. (Theorem 4.3.1) Let X1, X2 · · · be a martingale with |Xn+1 −Xn| ≤ M < ∞.
Let C = {limXn exists and is finite} and let D = {lim supXn = ∞ and lim inf Xn =
−∞}. Show that P (C ∪D) = 1.

42. (Theorem 4.3.2 Doob’s decomposition) Any submartingale Xn(n ≥ 0) can be
written in a unique way Xn = Mn+An where Mn is a martingale and An is a predictable
increasing sequene with A0 =0. Show the statement above.

43. (Theorem 4.3.4) Let Fn(n ≥ 0) be a filtration with F0 = {∅,Ω} and An(n ≥ 1)
a sequence of events with An ∈ Fn. Then state and prove the second Borel-Cantelli’s
lemma.

44. (4.3.4 Branching Process) Let ξni be iid non-negative integer-valued random
variables. Define Zn which is a Galton-Watson process.

45. (Lemma 4.3.9) Let Fn = σ[ξmi |i ≥ 1, 1 ≤ m ≤ n] and µ = E[ξmi ] ∈ (0,∞).
Then show that Zn/µ

n is a martingale with regard to Fn.

46. (Theorem 4.3.10) If µ < 1 then Zn = 0 for all n sufficiently large. Then show
that Zn/µ

n → 0.

47. (Theorem 4.3.11) If µ = 1 and P (ξmi = 1) < 1, then Zm = 0 for all n sufficiently
large.

48. (Theorem 4.4.1) If Xn is a submartingale and N is a stopping time with P (N ≤
k) = 1 then E[X0] ≤ E[XN ] ≤ E[Xk].

49. (Theorem 4.4.2 Doob’s inquality) Let Xm be a submartingale and define X̄n =
max0≤m≤nX

+
m. Let λ > 0 and A = {X̄n ≥ λ}. Show that λP (A) ≤ E[XnIA] ≤ E[X+

n ]

50. (Example 4.4.3 random walks) Consider Sn = ξ1 + · · · ξn where ξm are inde-
pendent and have E[ξm] = 0, E[ξ2m] = σ2m < ∞. Let λ = x2 and obtain Kolmogorov’s
maximimal inequality by applying Theorem 4.4.2.

51. (Theorem 4.4.4 Lp maximal inequality) Show that if Xn is a submartingale
then E[X̄p

n] ≤ ( p
p−1)pE[(X+

n )p] for p ∈ (1,∞)

52. (Theorem 4.4.6 Lp convergence theorem) Suppose Xn is a martingale with

supE|Xn|p <∞ where p > 1. Show that Xn
a.s−−→ X and Xn

Lp

−→ X.

53. (Exercise 4.4.2 and 4.4.4)

(1) (Generalization of Theorem 4.1) If Xn is a submartingale and M ≤ N ,
P (N ≤ k) = 1, then show that E[XM ] ≤ E[XN ].

(2) Strengthen the concolusion of Exercise 4.4.2 to XM ≤ E[XN |FM ]. Hint:
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You may consider L = M(ω ∈ A), L = N(ω /∈ A) which is a stopping time.

54. (Exercise 4.4.6) Let ξm are independent and E[ξm] = 0, E[ξ2m] = σ2m, |ξm| ≤ K.
Let Sn =

∑n
m=1 ξm and let sn =

∑n
m=1 σ

2
m. Then S2

n − s2n is a martingale. By applying
theorem 4.4.1, show that P (maxm=1···n |Sm| ≥ x)(x+K)2/V [Sn].

55. (Exercise 4.4.9) Let Xn and Yn be martingales with E[X2
n], E[Y 2

n ] <∞. Show
that E[XnYn]− E[X0Y0] =

∑n
m=1E[(Xm −Xm−1)(Ym − Ym−1)].

56. (Uniform Integrability)

(1) State the definition of {Xi}{i∈I} being uniformly integrable.

(2) Prove that {Xi}{i∈I} is uniformly integrable⇔ L1−bounded and absolutely
continuous. (You may refer to the textbook of Beijing University. theorem 3.4.3)

57. (Theorem 4.6.1) Given a probability space (Ω,F0, P ) and an X ∈ L1. Show
that {E[X|F ]}F⊂F0 (F : σ-algebra) is uniformly integrable.

58. (Theorem 4.6.2) Let φ ≥ 0 be any function with φ(x)/x → ∞ as x → ∞. If
E[φ(|Xi|)] ≤ C for all i ∈ I then {Xi}i∈I is uniformly integrable.

59. (Theorem 4.6.3) Show that if Xn
P−→ X then the following are equivalent.

(1) {Xn}n≥0 is uniformly integrable

(2) Xn
L1−→ X

(3) E|Xn| → E|X| <∞

60. (Theorem 4.6.4) Show that for a submartingale, the following are equivalent.

(1) It is uniformly integrable

(2) It converges a.s and in L1

(3) It converges in L1

61. (Lemma 4.6.5) Show that if integrable random variableXn
L1

−→ X then E[XnIA]→
E[XIA].

62. (Lemma 4.6.6) If a martingale Xn
L1

−→ X then Xn = E[X|Fn].

63. (Theorem 4.6.7) For a martingale, the following are equivalent.

(1) It is uniformly integrable

(2) It converges a.s and in L1

(3) It converges in L1
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(4) There is an integrable random variable X so that Xn = E[X|Fn]

64. (Theorem 4.6.8) Suppose Fn ↗ F∞ (Fn,F∞ are σ-algebras. Thus F∞ =

σ[∪n≥1Fn]) Show that E[X|Fn]
a.s,L1

−−−−→ E[X|F∞].

65. (Theorem 4.6.9 Levy’s 0-1 law) State Levy’s 0-1 law.

66. (Theorem 4.6.10) Dominated Convergence Theorem for conditional expecta-
tions. Suppose Yn

a.s−−→ Y and |Yn| ≤ Z for all n where E[Z] < ∞. Show that if
Fn ↗ F∞ (Fn,F∞ are σ-algebras) then E[Yn|Fn]

a.s−−→ E[Y |F∞].

67. (Exercise 4.6.4) Let Xn be random variables taking values in [0,∞). Let D =
{ω|∃n ∈ N s.t Xn = 0} and assume that P (D|X1 · · ·Xn) ≥ δ(x) > 0 a.s on {Xn ≤ x}.
Use theorem 4.6.9 to conclude that P (D ∪ {limnXn =∞}) = 1.

68. (Exercise 4.6.7) Show that if Fn ↗ F∞ (Fn,F∞ are σ-algebras) and Yn
L1

−→ Y

then E[Yn|Fn]
L1

−→ E[Y |F∞].

69. Answer the following questions.

(1) (Definition) State the definition of backwards martingales.

(2) (Thorem 4.7.1) Let {Xn}n≤0 be a backward martingale. Show that X−∞ =
limn→−∞Xn exists a.s and in L1.

70. (Theorem 4.7.2) Let {Xn}n≤0 be a backward martingale. Show that X−∞ =
E[X0|F−∞] where X−∞ = limn→−∞Xn and F−∞ = ∩n≤0F∞.

71. (Theorem 4.7.3) Suppose Y is an integrable random variable. Consider {Fn}

where Fn ↘ F−∞ as n→ −∞. Show that E[Y |Fn]
a.s/L1

−−−−→ E[Y |F−∞].

72. (Theorem 4.8.1) Show that if Xn is a uniformly integrable submartingale then
for any stopping time N , XX∧n is uniformly integrable.

73. Prove the following theorems.

(1) (Theorem 4.8.2) Show that if Xn is a uniformly integrable submartingale
then for any stopping time N ≤ ∞, we have E[X0] ≤ E[XN ] ≤ E[limn→Xn].

(2) (Theorem 4.8.3) Show that if E|XN | < ∞ and XnI{N > n} is uniformly
integrable, then XN∧n is uniformly integrable and hence E[X0] ≤ E[XN ]. ({Xn}n≥0 is
a submartingale).

(3) (Theorem 4.8.4) If Xn is a nonnegative supermartingale and N ≤ ∞ is a
stopping time, then E[X0] ≥ E[XN ].

74. (Theorem 4.8.5) Suppose Xn is a submartingale and E(|Xn+1 −Xn| |Fn) ≤ B
a.s. Show that if N is a stopping time with E[N ] <∞, then XN∧n is uniformly integrable
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and hence E[XN ] ≥ E[X0].
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